Rigid Motions in the Cubic Grid: A Discussion on Topological Issues
Nicolas Passat  1  , Yukiko Kenmochi  2@  , Phuc Ngo  3  , Kacper Pluta  4  
1 : Centre de Recherche en Sciences et Technologies de l'Information et de la Communication  (CRESTIC)  -  Website
Université de Reims - Champagne Ardenne : EA3804
UFR Sciences Exactes et Naturelles Moulin de la Housse BP 1039 51687 Reims CEDEX 2 FRANCE -  France
2 : Laboratoire d'Informatique Gaspard-Monge
Fédération de Recherche Bézout, École des Ponts ParisTech (ENPC), ESIEE, Université Paris-Est Marne-la-Vallée (UPEMLV), CNRS : UMR8049
3 : Laboratoire Lorrain de Recherche en Informatique et ses Applications
Institut National de Recherche en Informatique et en Automatique, Université de Lorraine, Centre National de la Recherche Scientifique : UMR7503
4 : Technion - Israel Institute of Technology [Haifa]

Rigid motions on 2D digital images were recently investigated with the purpose of preserving geometric and topological properties. From the application point of view, such properties are crucial in image processing tasks, for instance image registration. The known ideas behind preserving geometry and topology rely on connections between the 2D continuous and 2D digital geometries that were established via multiple notions of regularity on digital and continuous sets. We start by recalling these results; then we discuss the difficulties that arise when extending them from Z^2 to Z^3 . On the one hand, we aim to provide a discussion on strategies that prove to be successful in Z^2 and remain valid in Z^3 ; on the other hand, we explain why certain strategies cannot be extended to the 3D framework of digitized rigid motions. We also emphasize the relationships that may exist between certain concepts initially proposed in Z^2 . Overall, our objective is to initiate an investigation about the most promising approaches for extending the 2D results to higher dimensions.


Online user: 1