Facet Connectedness of Arithmetic Discrete Hyperplanes With Non-Zero Shift
1 : Laboratoire Lorrain de Recherche en Informatique et ses Applications
(LORIA)
-
Website
Université Henri Poincaré - Nancy I : Université de Lorraine, Institut National Polytechnique de Lorraine, Université Nancy II, CNRS : UMR7503, INRIA
Campus Scientifique BP 239 54506 Vandoeuvre-lès-Nancy Cedex -
France
2 : École normale supérieure - Cachan
École normale supérieure de Cachan - ENS Cachan
3 : LAMA
Université Savoie Mont Blanc, Université Savoie Mont Blanc
We present a criterion for the arithmetic discrete hyperplane P(v, μ, θ) to be facet connected when θ is the connecting thickness Ω(v, μ). We encode the shift μ in a numeration system associated with the normal vector v and we describe an incremental construction of the plane based on this encoding. We deduce a connectedness criterion and we show that when the Fully Subtractive algorithm applied to v has a periodic behaviour, the encodings of shifts μ for which the plane is connected may be recognised by a finite state automaton.