A New Entropy for Hypergraphs

Isabelle Bloch ${ }^{1}$, Alain Bretto ${ }^{2}$

1. LTCI, Télécom ParisTech, Université Paris Saclay, Paris, France
2. GREYC CNRS UMR 6072, NormandieUnicaen, Caen, France
isabelle.bloch@telecom-paristech.fr, alain.bretto@unicaen.fr

Motivation

- Representation of structured information as hypergraphs.
- Entropy measures.
- Fine grained analysis of the structure and complexity of hypergraphs.
- \Rightarrow Entropy vector: entropy values of all partial hypergraphs.

Notations and background

- Hypergraph $H=\left(V, E=\left\{e_{i}, i=1 \ldots m, e_{i} \subseteq V\right\}\right),|V|=n,|E|=m$.
- Incidence matrix $I, L(H)=I(H) I(H)^{t}=\left(\left(\left|e_{i} \cap e_{j}\right|\right)\right)_{i, j \in\{1 \ldots m\}}$.
- Normalized eigenvalues of $L(H): \mu_{i}, i=1$...m.
- Entropy $S(H)=-\sum_{i=1}^{m} \mu_{i} \log _{2}\left(\mu_{i}\right)$.
- Partial hypergraph $H^{\prime}=\left(V^{\prime},\left\{e_{j}, j \in J\right\}\right), J \subseteq\{1 \ldots m\}, \cup_{j \in J} e_{j} \subseteq$ $V^{\prime} \subseteq V$ (here $\left.V^{\prime}=V\right)$. Notation: $H^{\prime} \leq H$.

Main definition: entropy vector

For $i \leq m$:

$$
S E_{i}(H)=\left\{S\left(H_{i}\right)\left|H_{i}=\left(V, E_{i}\right), H_{i} \leq H,\left|E_{i}\right|=i\right\}\right.
$$

= set of entropy values of all partial hypergraphs of H whose set of hyperedges has cardinality i, arranged in increasing order
Entropy vector of the hypergraph H :
$S E(H)=\left(S E_{1}(H), S E_{2}(H), \ldots S E_{m}(H)\right)$
with $2^{m}-1$ coordinates.

A simple example

- $S E_{1}$: three partial hypergraphs containing one hyperedge $\left(e_{1}, e_{2}\right.$ and e_{3}, respectivly).

$$
S E_{1}=(0,0,0)
$$

- $S E_{2}$: three partial hypergraphs containing two hyperedges.
$\left(e_{1}, e_{2}\right): L=\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$, eigenvalues $=2$ and $3, s_{1}=-\frac{2}{5} \log _{2} \frac{2}{5}-$
$\frac{3}{5} \log _{2} \frac{3}{5} \simeq 0.97$.
$\left(e_{1}, e_{3}\right)$: same reasoning.
$\left(e_{2}, e_{3}\right): L=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, eigenvalues $=1$ and $3, s_{2}=-\frac{1}{4} \log _{2} \frac{1}{4}-$ $\frac{3}{4} \log _{2} \frac{3}{4} \simeq 0.81$.

$$
S E_{2}=\left(s_{2}, s_{1}, s_{1}\right) \simeq(0.81,0.97,0.97)
$$

- $S E_{3}$: one partial hypergraph containing three hyperedges, i.e. H. $L=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$, eigenvalues $=1,3$ and $3, s_{3}=-\frac{1}{7} \log _{2} \frac{1}{7}-$ $2 \frac{3}{7} \log _{2} \frac{3}{7} \simeq 1.45$.

$$
S E_{3}=\left(s_{3}\right) \simeq(1.45)
$$

- Entropy vector:

$$
S E(H)=\left(0,0,0, s_{2}, s_{1}, s_{1}, s_{3}\right) \simeq(0,0,0,0.81,0.97,0.97,1.45)
$$

Some properties

- $S(H)=0$ if and only if $|E|=1$.
- $S(H)=\log _{2}(n)-\log _{2}(r(H))=\log _{2}(m)$, where $r(H)=\frac{n}{m}$ (rank of H), if and only if H is uniform (i.e. $\forall e \in E,|e|=r(H)$) and the intersection of any two distinct hyperedges is empty (i.e. for all e, e^{\prime} in E such that $\left.e \neq e^{\prime},\left|e \cap e^{\prime}\right|=0\right)$.
- Two isomorphic hypergraphs have the same entropy vectors.
- Lattice structures:
- on \mathcal{H} (isomorphim classes of hypergraphs) for the partial ordering defined by the subhypergraph relation \leq_{f},
- on $S E_{\mathcal{H}}=\{S E(H) \mid H \in \mathcal{H}\}$ for Pareto partial ordering on vectors.
- $H^{\prime} \leq_{f} H \Rightarrow S E\left(H^{\prime}\right) \leq S E(H)$.

On going work

- Reducing the complexity $\left(|S E(H)|=2^{m}-1\right)$
- by discarding two small or two large partial hypergraphs;
- by approximating the computation of entropy;
- by considering only the leading principal matrices ($m-1$ instead of $2^{m}-1$) after sorting the hyperedges by increasing cardinality
- Relation between entropy and Zeta function:

$$
\zeta_{H}(s)=\operatorname{Tr}\left(\mathcal{L}(H)^{-s}\right)=\sum_{i=1, \mu_{i} \neq 0}^{m} \mu_{i}^{-s}
$$

where $\mathcal{L}(H)=\frac{L(H)}{\operatorname{Tr}(L(H))}$.
First results:
$\zeta_{H}^{\prime}(-1)=\ln (2) S(H), \zeta_{H}^{\prime}(0)=-\ln (\operatorname{det}(\mathcal{L}(H))), \zeta_{H}(-s)=e^{(1-s) R_{s}(H)}$
where $R_{s}(H)=\frac{1}{1-s} \ln \left(\sum_{i=1}^{m} \mu_{i}^{s}\right)$ (Renyi entropy).

- Illustrations and examples.

References

Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces from directed line graphs. PR (2016).
Berge, C.: Hypergraphs. Elsevier Science Publisher (1989).
Bloch, I., Bretto, A.: Mathematical morphology on hypergraphs, application to similarity and positive kernel. CVIU (2013).
Bretto, A.: Hypergraph Theory: an Introduction. Springer-Verlag (2013).
Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27 (1948).

