Minimal Component-Hypertrees

Alexandre Morimitsu
Wonder A. L. Alves Dennis J. Silva
Charles F. Gobber Ronaldo F. Hashimoto

alexandre.morimitsu@usp.br

University of Sdao Paulo

Universidade Nove de Julho

March 27, 2019


alexandre.morimitsu@usp.br

Introduction and Related Works

Background
Theory

Proposed Method
Algorithms

Conclusion

/42



Introduction and Related Works

/42



Introduction

» Mathematical Morphology;

42



Introduction

» Mathematical Morphology;

» Connected components (CCs) can give information about the
characteristics of an object;



Introduction

» Mathematical Morphology;

» Connected components (CCs) can give information about the
characteristics of an object;

USP



Introduction
Components Trees (Salembier et al., 1998)

> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;
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> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

f:iDCZ"5{0,...,K -1} X\(f)={peD: f(p) = A}
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Introduction
Components Trees (Salembier et al., 1998)

> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

f:iDCZ"5{0,...,K -1} X\(f)={peD: f(p) = A}
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Introduction

Connected Components

» Closely related to the the chosen connectivity;
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Introduction

Connected Components

» Closely related to the the chosen connectivity;
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» Groups of close objects can be considered as a single
component;
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Introduction

Components Trees

f:DCZ" 5 {0,...,K -1} X\(f)={peD: f(p) > A}
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Introduction

Components Trees

f:DCZ" 5 {0,...,K -1} X\(f)=1{peD: f(p) > A} 3 %3
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Introduction
Component-Hypertrees (Passat and Naegel, 2011)

» Another hierarchy of connected components: multiple
connectivities;
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Introduction
Component-Hypertrees (Passat and Naegel, 2011)

» Another hierarchy of connected components: multiple
connectivities;

> A bigger neighborhood may connect disjoint components built
from a smaller neighborhood;
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Introduction

Component-Hypertrees

» Graph that represents both inclusions based on level sets and
neighborhoods: component-hypertree.

3x3 5x3 7Tx3
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» Not as widely adopted as component trees:
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Introduction

Component-Hypertrees

» Not as widely adopted as component trees:

» Includes information of all individual component trees and
inclusion of nodes from consecutive trees;

» Cost in memory and processing times is multiplied by the
number of neighborhoods;
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» Focused on the theory of hypertrees;

11/42



Introduction

Component-Hypertrees

» Definition for mask-based connectivities (Passat and Naegel,
2011);

» Focused on the theory of hypertrees;

» Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

42



Introduction

Component-Hypertrees

» Definition for mask-based connectivities (Passat and Naegel,
2011);

» Focused on the theory of hypertrees;

» Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

» To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;



Introduction

Component-Hypertrees

» Definition for mask-based connectivities (Passat and Naegel,
2011);

» Focused on the theory of hypertrees;

» Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

» To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

» This is the problem we want to solve;
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Theory

Max-tree

> Max-tree: efficient way of implementing a component tree;
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> Max-tree: efficient way of implementing a component tree;
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Theory

Max-tree
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» Nodes are stored only once;

» Each pixel is stored only in the
smallest node that contains it;

» Construction algorithm is
optimized, i.e., it already allocate
the nodes without repetition;
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Theory

Max-tree
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» We want a similar structure for component-hypertrees.
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Naive approach

Simplified component-hypertree

» Naive approach: Build each max-tree separately;

» Merge nodes from consecutive trees;
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Naive approach

Simplified component-hypertree

» Naive approach: Build each max-tree separately;
» Merge nodes from consecutive trees;

» Approach works, but it is not efficient:

» Does not use previous computations;
» Repeated nodes in different trees;
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Proposed approach

Simplified component-hypertree

» Proposed approach:
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Proposed approach

Simplified component-hypertree

» Proposed approach:

» Supposes a construction algorithm that uses previously
computed max-tree and update them for the next
neighborhood;

» Keep track of changes to allocate only new nodes and arcs;
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Algorithms

» Unordered union-find based version;
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Algorithms

» Unordered union-find based version;
> Let A be a set of pair of neighboring pixels. Then, the
algorithm follows this template:

1. Initialize the max-tree with each pixel as a node; //makeset
2. For each pair (p, q) € A:
2.1 Connect p to g in the max-tree; //union (Wilkinson et al.,
2008)
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Algorithms

Union

> In the max-tree, connecting two pixels consists of merging two
separate paths of the tree into one;
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Algorithms

Hypertree Template

Let A = (Ay,...,.A,) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;
2. For1<i<n:
2.1 For (p, g) neighbors in A;:

2.1.1 Connect p and q in the max-tree, looking for new nodes and
arcs not present in step i — 1;

2.2 Update the allocated hypertree based on new nodes and arcs;



Algorithms

Hypertree Template

Let A = (Ay,...,.A,) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;
2. For1<i<n:
2.1 For “relevant” (p,q) in A;: //e.g. Morimitsu et al. (2015)

2.1.1 Connect p and q in the max-tree, looking for new nodes and
arcs not present in step i — 1;

2.2 Update the allocated hypertree based on new nodes and arcs;
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Algorithms

New nodes and arcs
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Algorithms

New nodes and arcs

» Detection of new nodes is found through changes in parent
relation during the connect procedure;
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Algorithms

New nodes and arcs

» Detection of new nodes is found through changes in parent
relation during the connect procedure;

» A node with a new child from the other path is a new node,
since it contain at least a new pixel,

» All ancestors in this path, up to the common ancestor, will
also now contain this new pixel and will be part of a new node.



Algorithms

New nodes and arcs
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Algorithms

New nodes

» Mark all nodes (i.e., add their representative to a queue) in a
path when a change in parenthood happens;
> Marked nodes are used to allocate new nodes;

» Sometimes two marked nodes represent a same new node.
» Usage of the find operation to avoid duplicated nodes;



Algorithms

New arcs

> Allocating arcs from new nodes:

» For all new nodes, find their respective parent (from the
max-tree) in hypertree and allocate these arcs;
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New arcs

> Allocating arcs from new nodes:
» For all new nodes, find their respective parent (from the
max-tree) in hypertree and allocate these arcs;
» Allocating arcs pointing from old nodes to new nodes:

» Allocate arcs that trigger a change in parenthood in the
connect procedure;



Algorithms

New arcs

> Allocating arcs from new nodes:

» For all new nodes, find their respective parent (from the
max-tree) in hypertree and allocate these arcs;
» Allocating arcs pointing from old nodes to new nodes:
» Allocate arcs that trigger a change in parenthood in the
connect procedure;
» Find all nodes from the previous tree with the same
representative as the new nodes and link them with an arc;



Theory

Obtained-hypertree
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Theory

Max-trees vs. Obtained Component-Hypertrees

» Nodes are stored only once; > V'
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Theory

Max-trees vs. Obtained Component-Hypertrees

» Nodes are stored only once;
> Each pixel is stored only in
the smallest node that

contains it;
» Construction algorithm

does not allocate repeated

nodes.
> All arcs give relevant

information regarding
inclusion relation.

v
Each pixel is stored only in
the smallest node that

contains in the first tree;
v

Removes most arcs that
give redundant information
regarding inclusion relation.



Theory

Minimal Component-Hypertrees
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Theory

Minimal Component-Hypertrees
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Theory

Minimal Component-Hypertrees
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Theory

Minimal Component-Hypertrees

» The obtained hypertree has the smallest’ number of nodes
and arcs such that:

lexcept for double arcs
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Theory

Minimal Component-Hypertrees

» The obtained hypertree has the smallest’ number of nodes
and arcs such that:
1. All original inclusion relations are preserved;
2. All nodes can be reconstructed without depending on nodes
with higher connectivity index;

Lexcept for double arcs
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Experiments

Time consumption

» Updating the max-tree is the most time consuming step;
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Experiments

Time consumption

» Updating the max-tree is the most time consuming step;
» For an optimized implementation using 50 square
neighborhoods:
» Total time ranging from 1 (0.25 mega-pixels) to 60s (8
mega-pixels);
» Only 3% to 6% of time used to allocate structures;
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Experiments

Memory saving
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Experiments

Memory saving

» Memory saved, in average, for n = 10:

» about 80% compared to the complete representation;
» about 50% compared to the naive implementation;
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Experiments

Memory saving

» Memory saved, in average, for n = 10:

» about 80% compared to the complete representation;
» about 50% compared to the naive implementation;

» This percentage increases as n increases since the number of
new nodes decreases;
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Conclusion

v

Algorithms for efficient storage of component-hypertrees was
proposed;

» Big saves in storage compared to other approaches;

v

Allocation of nodes and arcs is fast;

v

Computation of attributes will be presented in a later date
(ISMM 2019);
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Last Remarks

» Thank you!

» Questions? You can also check our poster;
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