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Introduction

I Mathematical Morphology;

I Connected components (CCs) can give information about the
characteristics of an object;
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Introduction
Components Trees (Salembier et al., 1998)

I A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;
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Introduction
Connected Components

I Closely related to the the chosen connectivity;

I Groups of close objects can be considered as a single
component;
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Introduction
Component-Hypertrees (Passat and Naegel, 2011)

I Another hierarchy of connected components: multiple
connectivities;

I A bigger neighborhood may connect disjoint components built
from a smaller neighborhood;
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Introduction
Component-Hypertrees

I Graph that represents both inclusions based on level sets and
neighborhoods: component-hypertree.
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Introduction
Component-Hypertrees

I Not as widely adopted as component trees:

I Includes information of all individual component trees and
inclusion of nodes from consecutive trees;

I Cost in memory and processing times is multiplied by the
number of neighborhoods;
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Introduction
Component-Hypertrees

I Definition for mask-based connectivities (Passat and Naegel,
2011);

I Focused on the theory of hypertrees;

I Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

I To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

I This is the problem we want to solve;
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Theory
Max-tree

I Max-tree: efficient way of implementing a component tree;
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Theory
Max-tree
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I Nodes are stored only once;

I Each pixel is stored only in the
smallest node that contains it;

I Construction algorithm is
optimized, i.e., it already allocate
the nodes without repetition;

I We want a similar structure for component-hypertrees.
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Naive approach
Simplified component-hypertree

I Naive approach: Build each max-tree separately;

I Merge nodes from consecutive trees;

I Approach works, but it is not efficient:
I Does not use previous computations;
I Repeated nodes in different trees;
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Proposed approach
Simplified component-hypertree

I Proposed approach:

I Supposes a construction algorithm that uses previously
computed max-tree and update them for the next
neighborhood;

I Keep track of changes to allocate only new nodes and arcs;
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Algorithms

I Unordered union-find based version;

I Let A be a set of pair of neighboring pixels. Then, the
algorithm follows this template:

1. Initialize the max-tree with each pixel as a node; //makeset
2. For each pair (p, q) ∈ A:

2.1 Connect p to q in the max-tree; //union (Wilkinson et al.,
2008)
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Algorithms
Union
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Algorithms
Union

I In the max-tree, connecting two pixels consists of merging two
separate paths of the tree into one;
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Algorithms
Hypertree Template

Let A = (A1, . . . ,An) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;

2. For 1 ≤ i ≤ n:
2.1 For (p, q) neighbors in Ai :

2.1.1 Connect p and q in the max-tree, looking for new nodes and
arcs not present in step i − 1;

2.2 Update the allocated hypertree based on new nodes and arcs;
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Let A = (A1, . . . ,An) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;

2. For 1 ≤ i ≤ n:
2.1 For “relevant” (p, q) in Ai : //e.g. Morimitsu et al. (2015)
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Algorithms
New nodes and arcs

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

23 / 42



Algorithms
New nodes and arcs

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

23 / 42



Algorithms
New nodes and arcs

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

2

11

23 / 42



Algorithms
New nodes and arcs

I Detection of new nodes is found through changes in parent
relation during the connect procedure;

I A node with a new child from the other path is a new node,
since it contain at least a new pixel;

I All ancestors in this path, up to the common ancestor, will
also now contain this new pixel and will be part of a new node.
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Algorithms
New nodes and arcs
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Algorithms
New nodes

I Mark all nodes (i.e., add their representative to a queue) in a
path when a change in parenthood happens;

I Marked nodes are used to allocate new nodes;
I Sometimes two marked nodes represent a same new node.
I Usage of the find operation to avoid duplicated nodes;
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Algorithms
New arcs

I Allocating arcs from new nodes:
I For all new nodes, find their respective parent (from the

max-tree) in hypertree and allocate these arcs;

I Allocating arcs pointing from old nodes to new nodes:
I Allocate arcs that trigger a change in parenthood in the

connect procedure;
I Find all nodes from the previous tree with the same

representative as the new nodes and link them with an arc;
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Theory
Obtained-hypertree
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Theory
Obtained-hypertree
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Theory
Max-trees vs. Obtained Component-Hypertrees

I Nodes are stored only once; I X;
I Each pixel is stored only in

the smallest node that
contains it;

I Each pixel is stored only in
the smallest node that
contains in the first tree;

I Construction algorithm
does not allocate repeated
nodes.

I X;

I All arcs give relevant
information regarding
inclusion relation.

I Removes most arcs that
give redundant information
regarding inclusion relation.
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Theory
Minimal Component-Hypertrees
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I Minimum hypertree?
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Theory
Minimal Component-Hypertrees

I The obtained hypertree has the smallest1 number of nodes
and arcs such that:

1. All original inclusion relations are preserved;
2. All nodes can be reconstructed without depending on nodes

with higher connectivity index;

1except for double arcs
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Experiments
Time consumption

I Updating the max-tree is the most time consuming step;

I For an optimized implementation using 50 square
neighborhoods:

I Total time ranging from 1 (0.25 mega-pixels) to 60s (8
mega-pixels);

I Only 3% to 6% of time used to allocate structures;
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Experiments
Memory saving
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Experiments
Memory saving

I Memory saved, in average, for n = 10:
I about 80% compared to the complete representation;
I about 50% compared to the naive implementation;

I This percentage increases as n increases since the number of
new nodes decreases;
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Conclusion
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Conclusion

I Algorithms for efficient storage of component-hypertrees was
proposed;

I Big saves in storage compared to other approaches;

I Allocation of nodes and arcs is fast;

I Computation of attributes will be presented in a later date
(ISMM 2019);
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Last Remarks

I Thank you!

I Questions? You can also check our poster;
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