Minimal Component-Hypertrees

Alexandre Morimitsu
Wonder A. L. Alves Dennis J. Silva
Charles F. Gobber Ronaldo F. Hashimoto

alexandre.morimitsu@usp.br

University of Sdao Paulo

Universidade Nove de Julho

March 27, 2019

alexandre.morimitsu@usp.br

Introduction and Related Works

Background
Theory

Proposed Method
Algorithms

Conclusion

/42

Introduction and Related Works

/42

Introduction

» Mathematical Morphology;

42

Introduction

» Mathematical Morphology;

» Connected components (CCs) can give information about the
characteristics of an object;

Introduction

» Mathematical Morphology;

» Connected components (CCs) can give information about the
characteristics of an object;

USP

Introduction
Components Trees (Salembier et al., 1998)

> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

JiDCE {0, K1)
o010 olEl
Bl o Bllo 1 ¢
o o o2

Introduction
Components Trees (Salembier et al., 1998)

> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

f:DczZ"=Ao0,..., K -1} X\(f) ={peD: f(p) > A}

o010 olEl
Bl o Bllo 1 ¢ Xo
o o o2

Introduction
Components Trees (Salembier et al., 1998)

> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

f:DczZ" = {0,..., K -1} X\(f) ={peD: f(p) > A}

Introduction
Components Trees (Salembier et al., 1998)

> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

f:iDCZ"5{0,...,K -1} X\(f)={peD: f(p) = A}

o010 olEl 1

Bl o Bllo 1 ¢ Xo

o o o2 |
aid
: N
X, I [|
| (|

|

X3 D =
| |
Xy
| & =

Introduction
Components Trees (Salembier et al., 1998)

> A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

f:iDCZ"5{0,...,K -1} X\(f)={peD: f(p) = A}

o010 olEl T
Bl o Bllo 1 ¢ Xo
o o o2 1
il 0

|
Y - I

- B
“I®* m "

]
1B O []

Introduction

Connected Components

» Closely related to the the chosen connectivity;

42

Introduction

Connected Components

» Closely related to the the chosen connectivity;
¢ 900 809

* O * O

o 090 900

® [I

o 0800 O

» Groups of close objects can be considered as a single
component;

6

42

Introduction

Components Trees

f:DCZ" 5 {0,...,K -1} X\(f)={peD: f(p) > A}

o010 ol

B o o 1 ¢ Xo

B o o o2 1
gl
4 ™
Xy I [|

B

X3 D D
= D
Xy
1 & O

42

Introduction

Components Trees

f:DCZ" 5 {0,...,K -1} X\(f)=1{peD: f(p) > A} 3 %3

00100
B o o ¢
B o o o2

o-o
=
:

>
O DN EE mm
I m
= mullnls

Introduction
Component-Hypertrees (Passat and Naegel, 2011)

» Another hierarchy of connected components: multiple
connectivities;

42

Introduction
Component-Hypertrees (Passat and Naegel, 2011)

» Another hierarchy of connected components: multiple
connectivities;

> A bigger neighborhood may connect disjoint components built
from a smaller neighborhood;

42

Introduction

Component-Hypertrees

» Graph that represents both inclusions based on level sets and
neighborhoods: component-hypertree.

3x3 5x3 7Tx3

42

Introduction

Component-Hypertrees

» Not as widely adopted as component trees:

10 /42

Introduction

Component-Hypertrees

» Not as widely adopted as component trees:

» Includes information of all individual component trees and
inclusion of nodes from consecutive trees;

10 /42

Introduction

Component-Hypertrees

» Not as widely adopted as component trees:

» Includes information of all individual component trees and
inclusion of nodes from consecutive trees;

» Cost in memory and processing times is multiplied by the
number of neighborhoods;

10/42

Introduction

Component-Hypertrees

» Definition for mask-based connectivities (Passat and Naegel,
2011);

» Focused on the theory of hypertrees;

11/42

Introduction

Component-Hypertrees

» Definition for mask-based connectivities (Passat and Naegel,
2011);

» Focused on the theory of hypertrees;

» Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

42

Introduction

Component-Hypertrees

» Definition for mask-based connectivities (Passat and Naegel,
2011);

» Focused on the theory of hypertrees;

» Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

» To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

Introduction

Component-Hypertrees

» Definition for mask-based connectivities (Passat and Naegel,
2011);

» Focused on the theory of hypertrees;

» Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

» To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

» This is the problem we want to solve;

Background

12/42

Theory

Max-tree

> Max-tree: efficient way of implementing a component tree;

13 /42

Theory

Max-tree

> Max-tree: efficient way of implementing a component tree;

0 1 3 4
0 7 9
13 14 15

Lk

B
=l
-

13 /42

Theory

Max-tree

0o 1 3
7 9

13 14 15

4

[

sl =

» Nodes are stored only once;

» Each pixel is stored only in the
smallest node that contains it;

» Construction algorithm is
optimized, i.e., it already allocate
the nodes without repetition;

/42

Theory

Max-tree

' °* » Nodes are stored only once;

0 7 9

L fo s » Each pixel is stored only in the
(Mﬁ smallest node that contains it;

10 1

1

» Construction algorithm is

g Q\ optimized, i.e., it already allocate
£

E | i n
4
u

" v

» We want a similar structure for component-hypertrees.

1.8

42

Naive approach

Simplified component-hypertree

» Naive approach: Build each max-tree separately;

» Merge nodes from consecutive trees;

15 /42

Naive approach

Simplified component-hypertree

» Naive approach: Build each max-tree separately;
» Merge nodes from consecutive trees;

» Approach works, but it is not efficient:

» Does not use previous computations;
» Repeated nodes in different trees;

42

Proposed Method

16 /42

Proposed approach

Simplified component-hypertree

» Proposed approach:

17/42

Proposed approach

Simplified component-hypertree

» Proposed approach:

» Supposes a construction algorithm that uses previously
computed max-tree and update them for the next
neighborhood;

» Keep track of changes to allocate only new nodes and arcs;

17 /42

Algorithms

» Unordered union-find based version;

18 /42

Algorithms

» Unordered union-find based version;
> Let A be a set of pair of neighboring pixels. Then, the
algorithm follows this template:

1. Initialize the max-tree with each pixel as a node; //makeset
2. For each pair (p, q) € A:
2.1 Connect p to g in the max-tree; //union (Wilkinson et al.,
2008)

18 /42

Algorithms

Union

o mll wliis

19 /42

Algorithms

Union

TAVar eV

19/42

Algorithms

Union

«0O)>» «F)»r «

Algorithms

Union

0o 1 3 4
7 9

13 14 (15)

19 /42

Algorithms
Union

-
T_‘

.
.
‘

Algorithms

Union

L2
T_‘

.\Eﬁ é@

19/42

Algorithms

Union

T_‘

‘ﬂ ﬁ ée

19/42

Algorithms

Union

L2
T_‘

PE

19 /42

Algorithms

Union

0o 1 3 4
7 9

13 14 (15)

j -y
o @

o

T_‘

19/42

Algorithms

Union

3

o

R N
19/42

Algorithms

Union
0 1 3 4
7 9
13 14 (1)

®

| |
uH
J@

) 3

e

19 /42

Algorithms

Union

> In the max-tree, connecting two pixels consists of merging two
separate paths of the tree into one;

20 /42

Algorithms

Hypertree Template

Let A = (Ay,...,.A,) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;
2. For1<i<n:
2.1 For (p, g) neighbors in A;:

2.1.1 Connect p and q in the max-tree, looking for new nodes and
arcs not present in step i — 1;

2.2 Update the allocated hypertree based on new nodes and arcs;

Algorithms

Hypertree Template

Let A = (Ay,...,.A,) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;
2. For1<i<n:
2.1 For “relevant” (p,q) in A;: //e.g. Morimitsu et al. (2015)

2.1.1 Connect p and q in the max-tree, looking for new nodes and
arcs not present in step i — 1;

2.2 Update the allocated hypertree based on new nodes and arcs;

N
N

)

Algorithms

New nodes and arcs

0o 1 3 4
7 9

13 14 (15)

L
E=RE s

23 /42

Algorithms

New nodes and arcs

—
F—\ o

23 /42

Algorithms

New nodes and arcs

L2
T_‘

O\EFI é@

23 /42

Algorithms

New nodes and arcs

» Detection of new nodes is found through changes in parent
relation during the connect procedure;

24 /42

Algorithms

New nodes and arcs

» Detection of new nodes is found through changes in parent
relation during the connect procedure;

» A node with a new child from the other path is a new node,
since it contain at least a new pixel,

» All ancestors in this path, up to the common ancestor, will
also now contain this new pixel and will be part of a new node.

Algorithms

New nodes and arcs

25/42

Algorithms

New nodes

» Mark all nodes (i.e., add their representative to a queue) in a
path when a change in parenthood happens;
> Marked nodes are used to allocate new nodes;

» Sometimes two marked nodes represent a same new node.
» Usage of the find operation to avoid duplicated nodes;

Algorithms

New arcs

> Allocating arcs from new nodes:

» For all new nodes, find their respective parent (from the
max-tree) in hypertree and allocate these arcs;

27 /42

Algorithms

New arcs

> Allocating arcs from new nodes:
» For all new nodes, find their respective parent (from the
max-tree) in hypertree and allocate these arcs;
» Allocating arcs pointing from old nodes to new nodes:

» Allocate arcs that trigger a change in parenthood in the
connect procedure;

Algorithms

New arcs

> Allocating arcs from new nodes:

» For all new nodes, find their respective parent (from the
max-tree) in hypertree and allocate these arcs;
» Allocating arcs pointing from old nodes to new nodes:
» Allocate arcs that trigger a change in parenthood in the
connect procedure;
» Find all nodes from the previous tree with the same
representative as the new nodes and link them with an arc;

Theory

Obtained-hypertree

0

Ve

28 /42

Theory

Obtained-hypertree

0

1

7

©

13 14 15

28 /42

Theory

Max-trees vs. Obtained Component-Hypertrees

» Nodes are stored only once; > V'

» Each pixel is stored only in » Each pixel is stored only in
the smallest node that the smallest node that
contains it; contains in the first tree;

» Construction algorithm > v
does not allocate repeated
nodes.

Theory

Max-trees vs. Obtained Component-Hypertrees

» Nodes are stored only once;
> Each pixel is stored only in
the smallest node that

contains it;
» Construction algorithm

does not allocate repeated

nodes.
> All arcs give relevant

information regarding
inclusion relation.

> V'
> Each pixel is stored only in
the smallest node that

contains in the first tree;
> V'

Theory

Max-trees vs. Obtained Component-Hypertrees

» Nodes are stored only once;
> Each pixel is stored only in
the smallest node that

contains it;
» Construction algorithm

does not allocate repeated

nodes.
> All arcs give relevant

information regarding
inclusion relation.

v
Each pixel is stored only in
the smallest node that

contains in the first tree;
v

Removes most arcs that
give redundant information
regarding inclusion relation.

Theory

Minimal Component-Hypertrees

T 0 1 3 4
0 7 9
13 14 15 '—\
= 2
1 10 11
2
16
= T
5
3 6 8
4
12 17
Av I i) it 3 |

» Minimum hypertree?

u]
o)
I
i
it

Theory

Minimal Component-Hypertrees

0
1
2
f— ?
3
4
4 3x3 5x3 7x3
Ayt f f f f f
1 2 3

31/42

Theory

Minimal Component-Hypertrees

32/42

Theory

Minimal Component-Hypertrees

0
- A
1
2
3
4
——)\ ‘ 3x3 ‘
T 1 1

33/42

Theory

Minimal Component-Hypertrees

» The obtained hypertree has the smallest’ number of nodes
and arcs such that:

lexcept for double arcs
34 /42

Theory

Minimal Component-Hypertrees

» The obtained hypertree has the smallest’ number of nodes
and arcs such that:
1. All original inclusion relations are preserved;
2. All nodes can be reconstructed without depending on nodes
with higher connectivity index;

Lexcept for double arcs

34

Experiments

Time consumption

» Updating the max-tree is the most time consuming step;

35 /42

Experiments

Time consumption

» Updating the max-tree is the most time consuming step;
» For an optimized implementation using 50 square
neighborhoods:
» Total time ranging from 1 (0.25 mega-pixels) to 60s (8
mega-pixels);
» Only 3% to 6% of time used to allocate structures;

35 /42

Experiments

Memory saving

T T
150,000
—— Complete o ! [
— Naive —— Complete
60,000 I L = —— Naive
—— Minimal L
2 ~—— Minimal
< £ 100,000 |- 3
Z <<
5 40,000 - 1 =
b 3
k] 2
E é 50,000
DU, I]
220,000 B “
0 0 | \
0 10 20 30 40 50 0 10 20 30 40 50

Number of Neighborhoods Number of Neighborhoods

36 /42

Experiments

Memory saving

» Memory saved, in average, for n = 10:

» about 80% compared to the complete representation;
» about 50% compared to the naive implementation;

37 /42

Experiments

Memory saving

» Memory saved, in average, for n = 10:

» about 80% compared to the complete representation;
» about 50% compared to the naive implementation;

» This percentage increases as n increases since the number of
new nodes decreases;

37 /42

Conclusion

38 /42

Conclusion

v

Algorithms for efficient storage of component-hypertrees was
proposed;

» Big saves in storage compared to other approaches;

v

Allocation of nodes and arcs is fast;

v

Computation of attributes will be presented in a later date
(ISMM 2019);

39

Last Remarks

» Thank you!

» Questions? You can also check our poster;

40 /42

Acknowledgements

This study was financed in part by the CAPES - Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior (Finance Code 001);
FAPESP - Fundag¢3do de Amparo a Pesquisa do Estado de S3o
Paulo (Proc. 2018/15652-7); CNPq - Conselho Nacional de
Desenvolvimento Cientifico e Tecnoldgico (Proc. 428720/2018-8).

41 /42

References

Alexandre Morimitsu, Wonder AL Alves, and Ronaldo F
Hashimoto. Incremental and efficient computation of families of
component trees. In International Symposium on Mathematical
Morphology and Its Applications to Signal and Image
Processing, pages 681-692. Springer, 2015.

Nicolas Passat and Benoit Naegel. Component-hypertrees for
image segmentation. In ISMM, volume 6671, pages 284-295.
Springer, 2011.

Philippe Salembier, Albert Oliveras, and Luis Garrido.
Antiextensive connected operators for image and sequence
processing. IEEE Transactions on Image Processing, 7(4):
555-570, 1998.

Michael HF Wilkinson, Hui Gao, Wim H Hesselink, Jan-Eppo
Jonker, and Arnold Meijster. Concurrent computation of
attribute filters on shared memory parallel machines. |EEE
Transactions on Pattern Analysis and Machine Intelligence, 30
(10):1800-1813, 2008.

	Introduction and Related Works
	Background
	Theory

	Proposed Method
	Algorithms

	Conclusion

