
Minimal Component-Hypertrees

Alexandre Morimitsu
Wonder A. L. Alves Dennis J. Silva

Charles F. Gobber Ronaldo F. Hashimoto

alexandre.morimitsu@usp.br

University of São Paulo

Universidade Nove de Julho

March 27, 2019

1 / 42

alexandre.morimitsu@usp.br


Introduction and Related Works

Background
Theory

Proposed Method
Algorithms

Conclusion

2 / 42



Introduction and Related Works

3 / 42



Introduction

I Mathematical Morphology;

I Connected components (CCs) can give information about the
characteristics of an object;

4 / 42



Introduction

I Mathematical Morphology;

I Connected components (CCs) can give information about the
characteristics of an object;

4 / 42



Introduction

I Mathematical Morphology;

I Connected components (CCs) can give information about the
characteristics of an object;

4 / 42



Introduction
Components Trees (Salembier et al., 1998)

I A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

2

1
11

0 0

0
0

0 0
0
0 0 3

33
4 4

5 / 42



Introduction
Components Trees (Salembier et al., 1998)

I A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

2

1
11

0 0

0
0

0 0
0
0 0 3

33
4 4

5 / 42



Introduction
Components Trees (Salembier et al., 1998)

I A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

2

1
11

0 0

0
0

0 0
0
0 0 3

33
4 4

5 / 42



Introduction
Components Trees (Salembier et al., 1998)

I A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

2

1
11

0 0

0
0

0 0
0
0 0 3

33
4 4

5 / 42



Introduction
Components Trees (Salembier et al., 1998)

I A graph (tree) that represents the inclusion relation of
connected components of level sets of an image;

2

1
11

0 0

0
0

0 0
0
0 0 3

33
4 4

5 / 42



Introduction
Connected Components

I Closely related to the the chosen connectivity;

I Groups of close objects can be considered as a single
component;

6 / 42



Introduction
Connected Components

I Closely related to the the chosen connectivity;

I Groups of close objects can be considered as a single
component;

6 / 42



Introduction
Components Trees

2

1
11

0 0

0
0

0 0
0
0 0 3

33
4 4

7 / 42



Introduction
Components Trees

2

1
11

0 0

0
0

0 0
0
0 0 3

33
4 4

7 / 42



Introduction
Component-Hypertrees (Passat and Naegel, 2011)

I Another hierarchy of connected components: multiple
connectivities;

I A bigger neighborhood may connect disjoint components built
from a smaller neighborhood;

8 / 42



Introduction
Component-Hypertrees (Passat and Naegel, 2011)

I Another hierarchy of connected components: multiple
connectivities;

I A bigger neighborhood may connect disjoint components built
from a smaller neighborhood;

8 / 42



Introduction
Component-Hypertrees

I Graph that represents both inclusions based on level sets and
neighborhoods: component-hypertree.

9 / 42



Introduction
Component-Hypertrees

I Not as widely adopted as component trees:

I Includes information of all individual component trees and
inclusion of nodes from consecutive trees;

I Cost in memory and processing times is multiplied by the
number of neighborhoods;

10 / 42



Introduction
Component-Hypertrees

I Not as widely adopted as component trees:

I Includes information of all individual component trees and
inclusion of nodes from consecutive trees;

I Cost in memory and processing times is multiplied by the
number of neighborhoods;

10 / 42



Introduction
Component-Hypertrees

I Not as widely adopted as component trees:

I Includes information of all individual component trees and
inclusion of nodes from consecutive trees;

I Cost in memory and processing times is multiplied by the
number of neighborhoods;

10 / 42



Introduction
Component-Hypertrees

I Definition for mask-based connectivities (Passat and Naegel,
2011);

I Focused on the theory of hypertrees;

I Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

I To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

I This is the problem we want to solve;

11 / 42



Introduction
Component-Hypertrees

I Definition for mask-based connectivities (Passat and Naegel,
2011);

I Focused on the theory of hypertrees;

I Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

I To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

I This is the problem we want to solve;

11 / 42



Introduction
Component-Hypertrees

I Definition for mask-based connectivities (Passat and Naegel,
2011);

I Focused on the theory of hypertrees;

I Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

I To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

I This is the problem we want to solve;

11 / 42



Introduction
Component-Hypertrees

I Definition for mask-based connectivities (Passat and Naegel,
2011);

I Focused on the theory of hypertrees;

I Efficient way of updating a tree for the next
neighborhood (Morimitsu et al., 2015);

I To the best of our knowledge, there was no optimized way of
storing hypertrees efficiently;

I This is the problem we want to solve;

11 / 42



Background

12 / 42



Theory
Max-tree

I Max-tree: efficient way of implementing a component tree;

0 1

7

3

9

4

13 14

2

10 11

16

6 8

5

12 17

15

13 / 42



Theory
Max-tree

I Max-tree: efficient way of implementing a component tree;

0 1

7

3

9

4

13 14

2

10 11

16

6 8

5

12 17

15

13 / 42



Theory
Max-tree

0 1

7

3

9

4

13 14

2

10 11

16

6 8

5

12 17

15

I Nodes are stored only once;

I Each pixel is stored only in the
smallest node that contains it;

I Construction algorithm is
optimized, i.e., it already allocate
the nodes without repetition;

I We want a similar structure for component-hypertrees.

14 / 42



Theory
Max-tree

0 1

7

3

9

4

13 14

2

10 11

16

6 8

5

12 17

15

I Nodes are stored only once;

I Each pixel is stored only in the
smallest node that contains it;

I Construction algorithm is
optimized, i.e., it already allocate
the nodes without repetition;

I We want a similar structure for component-hypertrees.

14 / 42



Naive approach
Simplified component-hypertree

I Naive approach: Build each max-tree separately;

I Merge nodes from consecutive trees;

I Approach works, but it is not efficient:
I Does not use previous computations;
I Repeated nodes in different trees;

15 / 42



Naive approach
Simplified component-hypertree

I Naive approach: Build each max-tree separately;

I Merge nodes from consecutive trees;
I Approach works, but it is not efficient:

I Does not use previous computations;
I Repeated nodes in different trees;

15 / 42



Proposed Method

16 / 42



Proposed approach
Simplified component-hypertree

I Proposed approach:

I Supposes a construction algorithm that uses previously
computed max-tree and update them for the next
neighborhood;

I Keep track of changes to allocate only new nodes and arcs;

17 / 42



Proposed approach
Simplified component-hypertree

I Proposed approach:
I Supposes a construction algorithm that uses previously

computed max-tree and update them for the next
neighborhood;

I Keep track of changes to allocate only new nodes and arcs;

17 / 42



Algorithms

I Unordered union-find based version;

I Let A be a set of pair of neighboring pixels. Then, the
algorithm follows this template:

1. Initialize the max-tree with each pixel as a node; //makeset
2. For each pair (p, q) ∈ A:

2.1 Connect p to q in the max-tree; //union (Wilkinson et al.,
2008)

18 / 42



Algorithms

I Unordered union-find based version;
I Let A be a set of pair of neighboring pixels. Then, the

algorithm follows this template:

1. Initialize the max-tree with each pixel as a node; //makeset
2. For each pair (p, q) ∈ A:

2.1 Connect p to q in the max-tree; //union (Wilkinson et al.,
2008)

18 / 42



Algorithms
Union

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

19 / 42



Algorithms
Union

19 / 42



Algorithms
Union

19 / 42



Algorithms
Union

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

19 / 42



Algorithms
Union

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

19 / 42



Algorithms
Union

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

2

11

19 / 42



Algorithms
Union

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

2

11

19 / 42



Algorithms
Union

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

2

11

19 / 42



Algorithms
Union

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

2

11

19 / 42



Algorithms
Union

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

1111

2

19 / 42



Algorithms
Union

2

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

19 / 42



Algorithms
Union

I In the max-tree, connecting two pixels consists of merging two
separate paths of the tree into one;

20 / 42



Algorithms
Hypertree Template

Let A = (A1, . . . ,An) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;

2. For 1 ≤ i ≤ n:
2.1 For (p, q) neighbors in Ai :

2.1.1 Connect p and q in the max-tree, looking for new nodes and
arcs not present in step i − 1;

2.2 Update the allocated hypertree based on new nodes and arcs;

21 / 42



Algorithms
Hypertree Template

Let A = (A1, . . . ,An) be a sequence of n increasing sets of
neighboring pixels. Then, the hypertree construction algorithm
follows the template below:

1. Initialize the max-tree;

2. For 1 ≤ i ≤ n:
2.1 For “relevant” (p, q) in Ai : //e.g. Morimitsu et al. (2015)

2.1.1 Connect p and q in the max-tree, looking for new nodes and
arcs not present in step i − 1;

2.2 Update the allocated hypertree based on new nodes and arcs;

22 / 42



Algorithms
New nodes and arcs

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

23 / 42



Algorithms
New nodes and arcs

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

23 / 42



Algorithms
New nodes and arcs

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

2

11

23 / 42



Algorithms
New nodes and arcs

I Detection of new nodes is found through changes in parent
relation during the connect procedure;

I A node with a new child from the other path is a new node,
since it contain at least a new pixel;

I All ancestors in this path, up to the common ancestor, will
also now contain this new pixel and will be part of a new node.

24 / 42



Algorithms
New nodes and arcs

I Detection of new nodes is found through changes in parent
relation during the connect procedure;

I A node with a new child from the other path is a new node,
since it contain at least a new pixel;

I All ancestors in this path, up to the common ancestor, will
also now contain this new pixel and will be part of a new node.

24 / 42



Algorithms
New nodes and arcs

2

11

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

16

6 8

5

12 17

15

0 1

7

3 4

9

10

13 14

11

2

25 / 42



Algorithms
New nodes

I Mark all nodes (i.e., add their representative to a queue) in a
path when a change in parenthood happens;

I Marked nodes are used to allocate new nodes;
I Sometimes two marked nodes represent a same new node.
I Usage of the find operation to avoid duplicated nodes;

26 / 42



Algorithms
New arcs

I Allocating arcs from new nodes:
I For all new nodes, find their respective parent (from the

max-tree) in hypertree and allocate these arcs;

I Allocating arcs pointing from old nodes to new nodes:
I Allocate arcs that trigger a change in parenthood in the

connect procedure;
I Find all nodes from the previous tree with the same

representative as the new nodes and link them with an arc;

27 / 42



Algorithms
New arcs

I Allocating arcs from new nodes:
I For all new nodes, find their respective parent (from the

max-tree) in hypertree and allocate these arcs;

I Allocating arcs pointing from old nodes to new nodes:
I Allocate arcs that trigger a change in parenthood in the

connect procedure;

I Find all nodes from the previous tree with the same
representative as the new nodes and link them with an arc;

27 / 42



Algorithms
New arcs

I Allocating arcs from new nodes:
I For all new nodes, find their respective parent (from the

max-tree) in hypertree and allocate these arcs;

I Allocating arcs pointing from old nodes to new nodes:
I Allocate arcs that trigger a change in parenthood in the

connect procedure;
I Find all nodes from the previous tree with the same

representative as the new nodes and link them with an arc;

27 / 42



Theory
Obtained-hypertree

28 / 42



Theory
Obtained-hypertree

0 1

7

3

9

4

13 14

2

10 11

16

6 8

5

12 17

15

28 / 42



Theory
Max-trees vs. Obtained Component-Hypertrees

I Nodes are stored only once; I X;
I Each pixel is stored only in

the smallest node that
contains it;

I Each pixel is stored only in
the smallest node that
contains in the first tree;

I Construction algorithm
does not allocate repeated
nodes.

I X;

I All arcs give relevant
information regarding
inclusion relation.

I Removes most arcs that
give redundant information
regarding inclusion relation.

29 / 42



Theory
Max-trees vs. Obtained Component-Hypertrees

I Nodes are stored only once; I X;
I Each pixel is stored only in

the smallest node that
contains it;

I Each pixel is stored only in
the smallest node that
contains in the first tree;

I Construction algorithm
does not allocate repeated
nodes.

I X;

I All arcs give relevant
information regarding
inclusion relation.

I Removes most arcs that
give redundant information
regarding inclusion relation.

29 / 42



Theory
Max-trees vs. Obtained Component-Hypertrees

I Nodes are stored only once; I X;
I Each pixel is stored only in

the smallest node that
contains it;

I Each pixel is stored only in
the smallest node that
contains in the first tree;

I Construction algorithm
does not allocate repeated
nodes.

I X;

I All arcs give relevant
information regarding
inclusion relation.

I Removes most arcs that
give redundant information
regarding inclusion relation.

29 / 42



Theory
Minimal Component-Hypertrees

0 1

7

3

9

4

13 14

2

10 11

16

6 8

5

12 17

15

I Minimum hypertree?

30 / 42



Theory
Minimal Component-Hypertrees

31 / 42



Theory
Minimal Component-Hypertrees

32 / 42



Theory
Minimal Component-Hypertrees

33 / 42



Theory
Minimal Component-Hypertrees

I The obtained hypertree has the smallest1 number of nodes
and arcs such that:

1. All original inclusion relations are preserved;
2. All nodes can be reconstructed without depending on nodes

with higher connectivity index;

1except for double arcs
34 / 42



Theory
Minimal Component-Hypertrees

I The obtained hypertree has the smallest1 number of nodes
and arcs such that:

1. All original inclusion relations are preserved;
2. All nodes can be reconstructed without depending on nodes

with higher connectivity index;

1except for double arcs
34 / 42



Experiments
Time consumption

I Updating the max-tree is the most time consuming step;

I For an optimized implementation using 50 square
neighborhoods:

I Total time ranging from 1 (0.25 mega-pixels) to 60s (8
mega-pixels);

I Only 3% to 6% of time used to allocate structures;

35 / 42



Experiments
Time consumption

I Updating the max-tree is the most time consuming step;
I For an optimized implementation using 50 square

neighborhoods:
I Total time ranging from 1 (0.25 mega-pixels) to 60s (8

mega-pixels);
I Only 3% to 6% of time used to allocate structures;

35 / 42



Experiments
Memory saving

0 10 20 30 40 50
0

20,000

40,000

60,000

Number of Neighborhoods

N
um

be
r

of
N

od
es

Complete
Naive
Minimal

0 10 20 30 40 50
0

50,000

100,000

150,000

Number of Neighborhoods

N
um

be
r

of
A

rc
s

Complete
Naive
Minimal

36 / 42



Experiments
Memory saving

I Memory saved, in average, for n = 10:
I about 80% compared to the complete representation;
I about 50% compared to the naive implementation;

I This percentage increases as n increases since the number of
new nodes decreases;

37 / 42



Experiments
Memory saving

I Memory saved, in average, for n = 10:
I about 80% compared to the complete representation;
I about 50% compared to the naive implementation;

I This percentage increases as n increases since the number of
new nodes decreases;

37 / 42



Conclusion

38 / 42



Conclusion

I Algorithms for efficient storage of component-hypertrees was
proposed;

I Big saves in storage compared to other approaches;

I Allocation of nodes and arcs is fast;

I Computation of attributes will be presented in a later date
(ISMM 2019);

39 / 42



Last Remarks

I Thank you!

I Questions? You can also check our poster;

40 / 42



Acknowledgements

This study was financed in part by the CAPES - Coordenação de
Aperfeiçoamento de Pessoal de Ńıvel Superior (Finance Code 001);
FAPESP - Fundação de Amparo a Pesquisa do Estado de São
Paulo (Proc. 2018/15652-7); CNPq - Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico (Proc. 428720/2018-8).

41 / 42



References

Alexandre Morimitsu, Wonder AL Alves, and Ronaldo F
Hashimoto. Incremental and efficient computation of families of
component trees. In International Symposium on Mathematical
Morphology and Its Applications to Signal and Image
Processing, pages 681–692. Springer, 2015.

Nicolas Passat and Benôıt Naegel. Component-hypertrees for
image segmentation. In ISMM, volume 6671, pages 284–295.
Springer, 2011.

Philippe Salembier, Albert Oliveras, and Luis Garrido.
Antiextensive connected operators for image and sequence
processing. IEEE Transactions on Image Processing, 7(4):
555–570, 1998.

Michael HF Wilkinson, Hui Gao, Wim H Hesselink, Jan-Eppo
Jonker, and Arnold Meijster. Concurrent computation of
attribute filters on shared memory parallel machines. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30
(10):1800–1813, 2008.

42 / 42


	Introduction and Related Works
	Background
	Theory

	Proposed Method
	Algorithms

	Conclusion

