Local turn-boundedness: a curvature control for a good digitization

Étienne LE QUENTREC,
Loïc MAZO, Étienne BAUDRIER, Mohamed TAJINE

27 March 2019

Loss of information

Add hypothesis to the border of the shape.

$\operatorname{Par}(r)$-regularity [Pav82]

Generalizations of $\operatorname{par}(r)$-regularity

half(r)-regular [ST07]

not half(r)-regular

r-stable [MKS09]

not r-stable

Generalizations of $\operatorname{par}(r)$-regularity

quasi(r)-regular [NKDRP17]

not quasi(r)-regular

	far from the digitization	oscillations
half (r)-regularity	Yes	No
r-stability	Yes	Yes
quasi (r)-regularity	No	Yes

Turn [Mil50], [AR89]

The turn of the polygon is the sum of the green angles.

Definition

The turn of a curve $\kappa(\mathcal{C})$ is the supremum of turn of polygons inscribed in it.

Basic properties of turn

The turn independent of the orientation of \mathcal{C} !

Proposition

For a curve parametrized by arc length γ of class C^{2},

$$
\kappa(\gamma)=\int_{0}^{L(\gamma)}|k(s)| d s
$$

$k(s)$ the curvature of γ at point $\gamma(s)$.

Theorem (Fenchel's Theorem)

For any Jordan curve $\mathcal{C}, \kappa(\mathcal{C}) \geq 2 \pi$.
Equality only on the convex case.

Definition of Local turn-boundedness

Definition

On a locally turn-bounded curve \mathcal{C} with parameters (θ, δ) :

$$
a, b \in \mathcal{C},\|b-a\|<\delta \Rightarrow \exists \mathcal{C}_{a}^{b}, \kappa\left(\mathcal{C}_{a}^{b}\right) \leq \theta .
$$

$\kappa\left(\mathcal{C}_{a}^{b}\right)>\theta$

$\kappa\left(\mathcal{C}_{a}^{b}\right) \leq \theta$
$\kappa\left(\mathcal{C}_{\mathrm{a}}^{b}\right)>\theta$

Local connectedness

Proposition

- \mathcal{C} Jordan curve locally turn-bounded with parameters $(\theta \in(0, \pi / 2], \delta)$,
- $a \in \mathcal{C}, \epsilon \leq \delta$.

Then $\mathcal{C} \cap B(a, \epsilon)$ is path-connected.

Control of an arc

Proposition

- \mathcal{C} a simple curve locally turn-bounded with parameters $(\theta \in(0, \pi), \delta)$,
- $\|a-b\|_{2}<\delta$.

Then \mathcal{C}_{a}^{b} bound by the orange curve.

$$
\theta=\pi / 2
$$

$$
\theta=\pi / 3
$$

Control of the curve thank the turn-step

Proposition (Hausdorff distance between the curve and a pixel)

- T a n-regular polygon with $n=3,4,6$,
- \mathcal{C} a locally turn-bounded Jordan curve with parameters $(\theta<2 \pi / n, \delta>h \sqrt{n-2})$.

Then the arc delimited by the first and the last intersection of \mathcal{C} and T is bound by the orange curve.

Control of the curve thank the turn-step

+ pixel on
\qquad domain where \mathcal{C} lies

Well-composedness

pixel on border of the shape \mathcal{C}

Proposition

- \mathcal{C} locally turn-bounded Jordan curve with parameters $(\theta \in(0, \pi / 2], \delta)$,
- $\delta \leq \operatorname{diam}(\mathcal{C})$,
- grid step $h<\delta / \sqrt{2}$.

Then, the Gauss digitization of \mathcal{C} is almost surely well-composed.

Future work

- Well-composedness without "almost surely"
- 4-connectedness of the digitized shape.
- Link between θ-turn step and $\operatorname{par}(r)$-regularity.
- Estimation of geometric features.

Thanks for your attention.

References I

囯 A．D．Alexandrov and Yu．G．Reshetnyak，General theory of irregular curves，Kluwer Academic Pulishers， 1989.
围 John W．Milnor，On the total curvature of knots，Annals of Mathematics，Second Series 52 （1950），248－257．
圊 Hans Meine，Ulrich Köthe，and Peer Stelldinger，A topological sampling theorem of robust boundary reconstruction and image segmentation，Discrete Applied Mathematics（2009），524－541．

Phuc Ngo，Yukiko Kenmochi，Isabelle Debled－Rennesson，and Nicolas Passat，Convexity－preserving rigid motions of 2D digital objects， Discrete Geometry for Computer Imagery（DGCI）（Vienna，Austria）， Lecture Notes in Computer Science，vol．10502，2017，pp．69－81．
囲 Theo Pavlidis，Algorithms for graphics and image processing， Springer－Verlag Berlin－Heidelberg， 1982.

References II

Peer Stelldinger and Kasim Terzic, Digitization of non-regular shapes in arbitrary dimensions, Image and Vision Computing 26 (2007), 1338-1346.

