

Towards well-composedness of cell complexes over nD pictures

Nicolas Boutry, EPITA Research and Development Laboratory (LRDE), France Rocio Gonzalez-Diaz <u>Maria-Jose Jimenez</u> University of Seville, Spain

Starting point:

nD picture I

Associated cubical complex Q(I)

An nD cell complex is continuously well-composed (**CWC**) if the boundary of its continuous analog is an (n-1)-manifold.

MOTIVATION:

CWC representation of an object enjoys some advantages:

- connected components of the boundary are Jordan (n-1)-D
 « surfaces » => they separate the ambient space into an
 interior (bounded) and an exterior (unbounded)
- Topological and geometrical computation benefits

An nD cell complex is continuously well-composed (**CWC**) if the boundary of its continuous analog is an (n-1)-manifold.

The 2D/3D repairing method of Gonzalez Diaz et al. 2015

No CWC \iff No DWC \iff critical configurations

The 2D/3D repairing method of Gonzalez Diaz et al. 2015

No CWC \iff no DWC \iff critical configurations

Combinatorial method: find and repair critical configurations

The 2D/3D repairing method of Gonzalez Diaz et al.

No CWC \iff no DWC \iff critical configurations Combinatorial method: find and repair critical configurations

CWC 3D Cell complex

Replicate the method for the **nD case**

nD picture I

nD simplicial complex Ps(I) homotopy equivalent to Q(I)

Replicate the method for the **nD case**

Replicate the method for the **nD case**

BUT

Repairing critical configurations in nD does not guarantee CWCness

$\frac{\text{Conjecture}}{\text{DWC}} \xrightarrow{\text{DWC}} \text{DWC}$

Much more difficult!!!

$\partial Ps(I)$ is an (n-1)-manifold??? Hard!

$\partial Ps(I)$ is a combinatorial (n-1)-manifold??? Hard!

∂Ps(I) is wWC??? Done!

wWC = weakly Well-Composed

ERSIDAD

LRDE

Computation of Ps(I) vs computation of Ps(Ī)

LRD

wWC is self-dual:

Ps(I) wWC Ps(\overline{I}) wWC |Ps(\overline{I})| U |Ps(I)|=Rⁿ Ps(\overline{I}) \cap Ps(I)= ∂ Ps(\overline{I})= ∂ Ps(I)

Future work:

- to study the combinatorial structure of $\partial Ps(I)$
- to prove? that it is a combinatorial (n-1)-manifold

THANKS!!!

