U

Towards well-composedness of cell complexes over nD pictures

Nicolas Boutry,
EPITA Research and Development Laboratory (LRDE), France

Rocio Gonzalez-Diaz Maria-Jose Jimenez University of Seville, Spain

Starting point：

nD picture I

Associated cubical complex Q（I）

An nD cell complex is continuously well-composed (CWC) if the boundary of its continuous analog is an ($\mathrm{n}-1$)-manifold.

MOTIVATION:

CWC representation of an object enjoys some advantages:

- connected components of the boundary are Jordan (n-1)-D " surfaces " => they separate the ambient space into an interior (bounded) and an exterior (unbounded)
- Topological and geometrical computation benefits

EPITA

An nD cell complex is continuously well-composed (CWC) if the boundary of its continuous analog is an ($\mathrm{n}-1$)-manifold.

Homotopy equivalent

No CWC «thickening» \longrightarrow CWC

The 2D/3D repairing method of Gonzalez Diaz et al. 2015

EPDITA ut

No CWC \Longleftrightarrow No DWC \Longleftrightarrow critical configurations

The 2D/3D repairing method of Gonzalez Diaz et al. 2015

No CWC \Longleftrightarrow no DWC \Longleftrightarrow critical configurations

Combinatorial method: find and repair critical configurations

The 2D/3D repairing method of Gonzalez Diaz et al.

No CWC \Longleftrightarrow no DWC \Longleftrightarrow critical configurations Combinatorial method: find and repair critical configurations

No CWC 3D Cubical complex

CWC
3D Cell complex

Replicate the method for the nD case

Replicate the method for the nD case

Replicate the method for the nD case

BUT

Repairing critical configurations in nD does not guarantee CWCness

Conjecture: CWC \Longrightarrow DWC

DWC \Rightarrow CWC

Much more difficult!!!
$\partial \mathrm{Ps}(\mathrm{I})$ is an ($\mathrm{n}-1$)-manifold??? Hard!
$\partial \mathrm{Ps}(\mathrm{I})$ is a combinatorial ($\mathrm{n}-1$)-manifold??? Hard!
$\partial \mathrm{Ps}(\mathrm{I})$ is $w W C ? ? ?$ Done!

wWC = weakly Well-Composed

$\mathrm{Ps}(\overline{\mathrm{I}})$

Ps(I) wWC
Ps $(\bar{I}) w W C$
$|\operatorname{Ps}(\bar{l})| \cup|\operatorname{Ps}(I)|=R^{n}$
$\operatorname{Ps}(\overline{\mathrm{I}}) \cap \mathrm{Ps}(\mathrm{I})=\partial \mathrm{Ps}(\overline{\mathrm{l}})=\partial \mathrm{Ps}(\mathrm{I})$

Future work:

- to study the combinatorial structure of $\partial \mathrm{Ps}(\mathrm{I})$
- to prove? that it is a combinatorial (n-1)-manifold

$$
\begin{aligned}
& \text { ?? ? ? ? ? ? } \\
& \text { ? ? ? ? ? ? } \\
& \text { ?? ? ? ? ? } \\
& \text { ?? }
\end{aligned}
$$

