Digital Two-dimensional Bijective Reflection and Associated Rotation

Andres E., Dutt M., Biswas A., Largeteau-Skapin G., Zrour R.

Goal :

- Propose a bijective Reflection Method for digital images
- Construct a bijective rotation method based on reflections

Continuous reflection Line \mathcal{L} : $C(x_o, y_o) \in \mathbb{R}^2$

$$v = (b, a) = (\cos \theta, \sin \theta)$$

$$\mathcal{L} = \left\{ (x, y) \in \mathbb{R}^2 : a(x - x_o) - b(y - y_o) = 0 \right\}$$

Corresponding Naive Digital Straight Line

$$DRSL: -\frac{max(|a|, |b|)}{2} \le a(x - x_o) - b(y - y_o) < \frac{max(|a|, |b|)}{2}$$

Perpendicular Line :
$$b(x - x_o) + a(y - y_o) = 0$$

Perpendicular Digital Straight Line (PDSL) P_k :

$$\frac{(2k-1)\max(|a|,|b|)}{2} \le b(x-x_o) + a(y-y_o) < \frac{\max(|a|,|b|)(2k+1)}{2}$$

This set of PDSLs partitions the digital space

Why Naive PDSLs ? Because there is a natural order on the points.

For a given (x,y) it is easy to determine the PDSL :

Perpendicular Digital Straight Line (PDSL) P_k :

$$\frac{(2k-1)b}{2} \le b(x-x_o) + a(y-y_o) < \frac{(2k+1)b}{2}$$

For a slope between -1 and 1

$$2k \le 2\frac{b(x-x_o) + a(y-y_o)}{b} + 1 < 2k + 2$$

$$k = \left\lfloor (x - x_o) + \frac{a}{b}(y - y_o) + \frac{1}{2} \right\rfloor$$

For a given ordinate y, the abscissa x in Pk is unique :

Perpendicular Digital Straight Line (PDSL) P_k :

$$\frac{(2k-1)b}{2} \le b(x-x_o) + a(y-y_o) < \frac{(2k+1)b}{2}$$

$$\frac{2k-1}{2} + x_o - \frac{a}{b}(y - y_o) \le x < \frac{2k+1}{2} + x_o - \frac{a}{b}(y - y_o)$$

$$\mathcal{X}(y) = \left\lceil \frac{(2k-1)}{2} + x_o - (a/b)(y-y_o) \right\rceil$$

Last Question : at what condition does Pk intersect the DRSL ?

Mathematical details : No Intersection point

Bijective Digital Reflection Algorithm:

Algorithm 1: REFLECTION TRANSFORM $R_{\theta,(x_o,y_o)}$

Input :
$$(x, y) \in \mathbb{Z}^2, (x_o, y_o) \in \mathbb{R}^2, -\pi/4 \le \theta < \pi/4$$

Output: $(x', y') \in \mathbb{Z}^2$
1 $k = \lfloor (x - x_o) + \frac{a}{b}(y - y_o) + \frac{1}{2} \rfloor$
2 Function $\mathcal{X}(y) : \mathbb{Z} \mapsto \mathbb{Z} : \mathcal{X}(y) = \left\lceil \frac{(2k-1)}{2} + x_o - (a/b)(y - y_o) \right\rceil$
3 $(x_1, y_1) = (\mathcal{X}(\lceil abk + y_o \rceil), \lceil abk + y_o \rceil)$
4 $(x_2, y_2) = (\mathcal{X}(\lfloor abk + y_o \rfloor), \lfloor abk + y_o \rfloor)$
5 If $-b/2 \le a(x_1 - x_o) - b(y_1 - y_o) < b/2$ Then
6 $(x', y') = (\mathcal{X}(2y_1 - y), 2y_1 - y)$
7 Elseif $-b/2 \le a(x_2 - x_o) - b(y_2 - y_o) < b/2$ Then
8 $(x', y') = (\mathcal{X}(2y_2 - y), 2y_2 - y)$
9 Else $(x', y') = (\mathcal{X}(y_1 + y_2 - y), y_1 + y_2 - y)$
10 return (x', y')

Bijective Digital Reflection Algorithm:

Bijective Digital Rotation based on Reflections:

Digital Bijective Rotation based on two Digital Bijective Reflections:

$$Rot_{\theta,(x_{o},y_{o})}(x,y) = \left(R_{\alpha+\frac{\theta}{2},(x_{o},y_{o})} \circ R_{\alpha,(x_{o},y_{o})}\right)(x,y)$$

Bijective Digital Rotation based on Reflections:

Digital Bijective Rotation based on two Digital Bijective Reflections:

$$Rot_{\theta,(x_o,y_o)}(x,y) = \left(R_{\alpha+\frac{\theta}{2},(x_o,y_o)} \circ R_{\alpha,(x_o,y_o)}\right)(x,y)$$

Characteristics :

- Bijective
- Arbitrary Rotation Center
- Arbitrary Rotation Angle
- Easily Invertible

There is however an extra parameter α that needs to be assessed.

Bijective Digital Rotation based on reflections:

Rotation Evaluation:

Compute the **average** and **maximal** distance between the **Continuous** and **digital** transform of image points

Influence of the angle α (here x₀=y₀=0) 5 Average Distance Maximal Distance. Alpha: 0.145 0 5 0.0 0.2 0.4 0.6 0.8

Rotation Evaluation: α with minimal error

Rotation Evaluation and General Conclusion:

- It seems to be a good idea to keep α=0 for the sake of simplicity but more work is required.
 x_o doesn't seem to matter, y_o does.
- The method fares worse than the equivalent Shear based Rotation. It is however easier to set up;
- First time, to the authors best knowledge, that a bijective digital reflection transform has been proposed;
- Rotations in high dimensions are defined by reflections. The main interest of this rotation method seems to be its extension to higher dimensions.

