Digital Two-dimensional Bijective Reflection and Associated Rotation

Andres E., Dutt M., Biswas A., Largeteau-Skapin G., Zrour R.

Goal :

- Propose a bijective Reflection Method for digital images
- Construct a bijective rotation method based on reflections

Bijective Reflection

Perpendicular Digital Straight

Idea :

Line (PDSL)

Perpendicular Digital Straight

Idea :

Line (PDSL)

Perpendicular Digital Straight

Idea :

Line (PDSL)

Mathematical details :

Continuous reflection Line $\mathcal{L}: \quad C\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2}$

$$
v=(b, a)=(\cos \theta, \sin \theta)
$$

$$
\mathcal{L}=\left\{(x, y) \in \mathbb{R}^{2}: a\left(x-x_{o}\right)-b\left(y-y_{o}\right)=0\right\}
$$

Corresponding Naive Digital Straight Line

$$
D R S L:-\frac{\max (|a|,|b|)}{2} \leq a\left(x-x_{o}\right)-b\left(y-y_{o}\right)<\frac{\max (|a|,|b|)}{2}
$$

Mathematical details :

Perpendicular Line : $b\left(x-x_{o}\right)+a\left(y-y_{o}\right)=0$

Perpendicular Digital Straight Line (PDSL) P_{k} :

$$
\frac{(2 k-1) \max (|a|,|b|)}{2} \leq b\left(x-x_{o}\right)+a\left(y-y_{o}\right)<\frac{\max (|a|,|b|)(2 k+1)}{2}
$$

This set of PDSLs partitions the digital space

Why Naive PDSLs ? Because there is a natural order on the points.

Mathematical details :

For a given (x, y) it is easy to determine the PDSL :
Perpendicular Digital Straight Line (PDSL) P_{k} :

$$
\begin{aligned}
& \frac{(2 k-1) b}{2} \leq b\left(x-x_{o}\right)+a\left(y-y_{o}\right)<\frac{(2 k+1) b}{2} \quad \begin{array}{l}
\text { For a slope } \\
\text { between }-1 \text { and } 1
\end{array} \\
& 2 k \leq 2 \frac{b\left(x-x_{o}\right)+a\left(y-y_{o}\right)}{b}+1<2 k+2 \\
& k=\left\lfloor\left(x-x_{o}\right)+\frac{a}{b}\left(y-y_{o}\right)+\frac{1}{2}\right\rfloor
\end{aligned}
$$

Mathematical details :

For a given ordinate y , the abscissa x in Pk is unique :
Perpendicular Digital Straight Line (PDSL) P_{k} :

$$
\begin{aligned}
& \frac{(2 k-1) b}{2} \leq b\left(x-x_{o}\right)+a\left(y-y_{o}\right)<\frac{(2 k+1) b}{2} \\
& \quad \frac{2 k-1}{2}+x_{o}-\frac{a}{b}\left(y-y_{o}\right) \leq x<\frac{2 k+1}{2}+x_{o}-\frac{a}{b}\left(y-y_{o}\right)
\end{aligned}
$$

$$
\mathcal{X}(y)=\left\lceil\frac{(2 k-1)}{2}+x_{o}-(a / b)\left(y-y_{o}\right)\right\rceil
$$

Mathematical details :

Last Question : at what condition does Pk intersect the DRSL?

xlim

Mathematical details: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is the intersection point

$$
\left(x_{1}, y_{1}\right)=\left(\mathcal{X}\left(\left\lceil a b k+y_{o}\right\rceil\right),\left\lceil a b k+y_{o}\right\rceil\right)
$$

Mathematical details : No Intersection point

$$
\left(\mathcal{X}\left(y_{1}+y_{2}-y_{p}\right), y_{1}+y_{2}-y_{p}\right)
$$

Bijective Digital Reflection Algorithm:

Algorithm 1: Reflection Transform $R_{\theta,\left(x_{o}, y_{o}\right)}$
Input : $(x, y) \in \mathbb{Z}^{2},\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2},-\pi / 4 \leqslant \theta<\pi / 4$
Output: $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$
$1 k=\left\lfloor\left(x-x_{o}\right)+\frac{a}{b}\left(y-y_{o}\right)+\frac{1}{2}\right\rfloor$
2 Function $\mathcal{X}(y): \mathbb{Z} \mapsto \mathbb{Z}: \mathcal{X}(y)=\left\lceil\frac{(2 k-1)}{2}+x_{o}-(a / b)\left(y-y_{o}\right)\right\rceil$
$3 \quad\left(x_{1}, y_{1}\right)=\left(\mathcal{X}\left(\left\lceil a b k+y_{o}\right\rceil\right),\left\lceil a b k+y_{o}\right\rceil\right)$
$4\left(x_{2}, y_{2}\right)=\left(\mathcal{X}\left(\left\lfloor a b k+y_{o}\right\rfloor\right),\left\lfloor a b k+y_{o}\right\rfloor\right)$
5 If $-b / 2 \leqslant a\left(x_{1}-x_{o}\right)-b\left(y_{1}-y_{o}\right)<b / 2$ Then
$6 \quad\left(x^{\prime}, y^{\prime}\right)=\left(\mathcal{X}\left(2 y_{1}-y\right), 2 y_{1}-y\right)$
7 Elseif $-b / 2 \leqslant a\left(x_{2}-x_{o}\right)-b\left(y_{2}-y_{o}\right)<b / 2$ Then
$8 \quad\left(x^{\prime}, y^{\prime}\right)=\left(\mathcal{X}\left(2 y_{2}-y\right), 2 y_{2}-y\right)$
9 Else $\left(x^{\prime}, y^{\prime}\right)=\left(\mathcal{X}\left(y_{1}+y_{2}-y\right), y_{1}+y_{2}-y\right)$
10 return $\left(x^{\prime}, y^{\prime}\right)$

Bijective Digital Reflection Algorithm:

14

Bijective Digital Rotation based on Reflections:

Digital Bijective Rotation based on two Digital Bijective Reflections:

$$
\operatorname{Rot}_{\theta,\left(x_{o}, y_{o}\right)}(x, y)=\left(R_{\alpha+\frac{\theta}{2},\left(x_{o}, y_{o}\right)} \circ R_{\alpha,\left(x_{o}, y_{o}\right)}\right)(x, y)
$$

Bijective Digital Rotation based on Reflections:

Digital Bijective Rotation based on two Digital Bijective Reflections:

$$
\operatorname{Rot}_{\theta,\left(x_{o}, y_{o}\right)}(x, y)=\left(R_{\alpha+\frac{\theta}{2},\left(x_{o}, y_{o}\right)} \circ R_{\alpha,\left(x_{o}, y_{o}\right)}\right)(x, y)
$$

Characteristics :

- Bijective
- Arbitrary Rotation Center
- Arbitrary Rotation Angle
- Easily Invertible

There is however an extra parameter α that needs to be assessed.

Bijective Digital Rotation based on reflections:

$$
\begin{array}{ccc}
(\mathrm{xo}, \mathrm{yo})=(0,0) & (\mathrm{xo}, \mathrm{yo})=(0.25,0.25) & (\mathrm{xo}, \mathrm{yo})=(0,0) \\
\alpha=0 & \alpha=0 & \alpha=\pi / 8
\end{array}
$$

7

Rotation Evaluation:

Compute the average and maximal distance between the Continuous and digital transform of image points

Influence of the angle α (here $x_{0}=y_{0}=0$)

Rotation Evaluation: α with minimal error

Rotation Evaluation and General Conclusion:

- It seems to be a good idea to keep $\alpha=0$ for the sake of simplicity but more work is required. x_{o} doesn't seem to matter, y_{o} does.
- The method fares worse than the equivalent Shear based Rotation. It is however easier to set up;
- First time, to the authors best knowledge, that a bijective digital reflection transform has been proposed;
- Rotations in high dimensions are defined by reflections. The main interest of this rotation method seems to be its extension to higher dimensions.

20

