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A spatial convexity descriptor for object enlacement
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A spatial convexity descriptor is designed and extended to complex spatial relations between objectslike enlacement and interlacement.
Goal

The four quadrants around a point M in the integer lattice grid G are
Z0(M) = {N ∈ G : 0 ≤ xN ≤ xM, 0 ≤ yN ≤ yM} ,
Z1(M) = {N ∈ G : xM ≤ xN < m, 0 ≤ yN ≤ yM} ,
Z2(M) = {N ∈ G : xM ≤ xN < m, yM ≤ yN < n}
Z3(M) = {N ∈ G : 0 ≤ xN ≤ xM, yM ≤ yN < n} .

Let us denote the number of object points (foreground pixels) of F in Zp(i, j) by np(i, j), for p =0, . . . , 3, i.e.,
np(i, j) = card(Zp(i, j) ∩ F}) (p = 0, . . . , 3) . (1)

Definition. A lattice set F is Quadrant-convex (shortly, Q-convex) if for each (i, j)(n0(i, j) > 0 ∧ n1(i, j) > 0 ∧ n2(i, j) > 0 ∧ n3(i, j) > 0) implies (i, j) ∈ F .

Q-Convexity

If F is not Q-convex, then there exists a position (i, j) violating the Q-convexity property, i.e.
np(i, j) > 0 for all p = 0, . . . , 3 and (i, j) /∈ F . We define the Q-concavity measure of F asthe sum of the contributions of non-Q-convexity for each point in R. Formally,

φF (i, j) = n0(i, j)n1(i, j)n2(i, j)n3(i, j)(1− f (i, j)) , (2)
where (i, j) is an arbitrary point of R, and f (i, j) = 1 if the point in position (i, j) belongs to theobject, otherwise f (i, j) = 0. Moreover,

φF = φF (F ) = ∑
(i,j)∈RφF (i, j) . (3)

In order to measure the degree of Q-concavity, we normalize φ so that it ranges in [0, 1]. We proposetwo possible normalizations (left global, right local) gained by normalizing each contribution.
E (1)
F (i, j) = φF (i, j)max(i′,j ′)∈R φF (i′, j ′) E (2)

F (i, j) = φF (i, j)((card(F ) + hFi + vFj )/4)4
Then we sum up each single contribution and we divide by the number of non-zero contributions.
Definition. For a given binary image F ,

E (·)F = ∑
(i,j)∈F̄

E (·)F (i, j)
card(F̄ )

where F̄ denotes the subset of (landscape) points in R \ F for which the contribution is not null.
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A quantitative Q-concavity descriptor

Remark: The intersections of F with the four quadrants
Z0, Z1, Z2, Z3 are an extension of the concept of longi-
tudinal cut to two dimensions, and so relation (2) gives aquantification of the enlacement by the reference object Ffor the landscape point (i, j).

Let F and G be two objects. How much is G enlaced by F? The idea is to capture how manyoccurrences of points of G are somehow between points of F . Therefore, φFG(i, j) = φF (i, j) if(i, j) ∈ G, and 0 otherwise. The enlacement descriptors of G by F are thus
E (1)
FG(i, j) = φFG(i, j)max(i,j)∈G φFG(i, j) E (2)

FG(i, j) = φFG(i, j)((card(F ) + hFi + vFj )/4)4
We may combine the enlacement of two objects by their harmonic mean to give a description ofmutual enlacement (interlacement): I (·)

FG = 2E (·)
FGE
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E (·)
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GF

E (2)
FG = 0, E (2)

GF = 0.93332, I (2)
FG = 0 E (2)

FG = 0.52357, E (2)
GF = 0.52856, I (2)

FG = 0.52605

Object enlacement and interlacement

In the experiments the two different interlacement values are computed such that F is the foregroundand G is the background.
Scale tolerance Test

•We digitized 14 images on different scales (32× 32, 64× 64, 128× 128, 256× 256, 512× 512)
•We computed the average of the measured interlacement differences over the 14 pairs of consec-utive images.
• Since the differences are of order 10−3, we deduce that scaling has no significant impact on thesemeasures, in practice, although in lower resolutions small parts of the shapes may disappear, andthe differences can be higher.

Classification Task 1
•Databases: CHASE (20 binary images with centerd optic disk) and DRIVE (20 binary with shiftedoptic disk)
•We gradually added different types of random noise (Speckle, salt & pepper, and Gaussian noise,in the figure from left to right, respectively) to the images of size 1000× 1000:
→Gaussian and Speckle noise were added with 10 increasing variances σ2 ∈ [0, 2].
→ Salt & pepper noise was added with 10 increasing amounts in [0, 0.1].

Then, we tried to classify the images into two classes (CHASEDB1 and DRIVE) based on theirinterlacement values, by the 5 nearest neighbor classifier with inverse Euclidean distance (5NN).We used leave-one-out cross validation to evaluate accuracy reported in the table:

Classification Task 2
•Dataset: High-Resolution Fundus (HRF) composed of 45 images of fundus: 15 healthy, 15 withglaucoma symptoms and 15 with diabetic retinopathy symptoms.
•Using the same classifier as before we tried to separate the 15 healthy images from the 30diseased cases.

Here we show the precision-recall curves obtained for this classification problem.In Green: I (1)
FG, in Blue: I (2)

FG, and in Red: curve of Clement et al..

Experiments

• A quantitative Q-concavity descriptor for complex spatial relations like enlacement and interlace-ment
• A fully two-dimensional approach: just using two directions (so four quadrants), we reachedcomparable and even better results than other methods employing many directions
• Various experiments illustrate the properties of the measure
• Future development: Preprocess the image by computing the principal axes and rotate the imageto align principal axes and coordinate axes

Summary
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