Convex Aggregation Problems in Z^2

Yan Gérard ${ }^{* 1}$
${ }^{1}$ LIMOS - Université d'Auvergne - Clermont-Ferrand I - France

Abstract

We introduce a family of combinatorial problems of digital geometry that we call convex aggregation problems. Two variants are considered. In Unary convex aggregation problems, a first lattice set A $\subseteq \mathrm{Z}^{\wedge} \mathrm{d}$ called support and a family of lattice sets $\mathrm{B}^{\wedge} \mathrm{i} \subseteq \mathrm{Z}^{\wedge} \mathrm{d}$ called pads are given. The question to determine whether there exists a non-empty subset of pads (the set of their indices is denoted I) whose union A $\cup_{-}\{\mathrm{i} \in \mathrm{I}\} \mathrm{B}^{\wedge} \mathrm{i}$ with the support is convex. In the binary convex aggregation problem, the input contains the support set $\mathrm{A} \subseteq \mathrm{Z}^{\wedge} 2$ and pairs of pads $\mathrm{B}^{\wedge} \mathrm{i}$ and $\left.\overline{\{ } \overline{\text { Bi }}\right\}$.ThequestionistoaggregatetothesupporteitherapadBioritscorrespond B^i $\cup _\{i \notin \mathrm{I}\} \overline{\{ }$ Bi\} isconvex.Weprovidea firstclassificationoftheclassesof complexitiesofthesetwoproblemsindimensio

[^0]
[^0]: *Speaker

