Compact packings of the plane with three sizes of discs

Thomas Fernique*1, Amir Hashemi*2, and Olga Sizova*3
${ }^{1}$ Laboratoire d'Informatique de Paris-Nord - université Paris 13, Institut Galilée, Centre National de la Recherche Scientifique - France
${ }^{2}$ Isfahan University of Technology - Iran
${ }^{3}$ Semenov Institute of Chemical Physics - Russia

Abstract

A compact packing is a set of non-overlapping discs where all the holes between discs are curvilinear triangles. There is only one compact packing by discs of radius 1 . There are exactly 9 values of r which allow a compact packing with discs of radius 1 and r. It has been proven that at most 11462 pairs (r, s) allow a compact packing with discs of radius $1, r$ and s. We prove that there are exactly 164 such pairs.

[^0]
[^0]: *Speaker

